I guess he means that, because we assumed that p,p+2 where the largest pair there does not exist any numbers with factors p+2k,p+2(k+1).

As I posted before, this statement is false. (p+2k)*(p+2(k+1)) has precisely those numbers as factors.

hm I meant prime factors, but maybe he does not use that they are prime factors, idk, im too lazy to read through the oproof atm.

]]>I guess he means that, because we assumed that p,p+2 where the largest pair there does not exist any numbers with factors p+2k,p+2(k+1).

As I posted before, this statement is false. (p+2k)*(p+2(k+1)) has precisely those numbers as factors.

]]>I'm having a lot of trouble understanding what it is you're trying to go for.

If we suppose that there exist a larger pair of the form p+2k and p+2(k+1) Than the set of numbers that have as factors p+2k and p+2(k+1) must be equal to 0 (since they do not exist).

We are supposing that there exists a larger pair where p+2k and p+2(k+1) are both prime? This doesn't make sense, we've already supposed that p and p+2 were the largest pair with this property.

And you say that the number of integers that have p+2k and p+2(k+1) as factors must be zero. This is false, just look at the number:

(p+2k)*(p+2(k+1))

This number has both those as a factor.

I guess he means that, because we assumed that p,p+2 where the largest pair there does not exist any numbers with factors p+2k,p+2(k+1). IM not sure though and I have not tried to understand the proof either.

]]>If we suppose that there exist a larger pair of the form p+2k and p+2(k+1) Than the set of numbers that have as factors p+2k and p+2(k+1) must be equal to 0 (since they do not exist).

We are supposing that there exists a larger pair where p+2k and p+2(k+1) are both prime? This doesn't make sense, we've already supposed that p and p+2 were the largest pair with this property.

And you say that the number of integers that have p+2k and p+2(k+1) as factors must be zero. This is false, just look at the number:

(p+2k)*(p+2(k+1))

This number has both those as a factor.

]]>make L that round to the closer integer ie if it is 1.2 the result should be 1!!!]]>

This is the twin prime conjecture a very old and hard problem in number theory.

]]>proof

We assume that the biggest pair is p and p+2. We can know create the function :

L(n,p)= n(1/p(p+2))

Where p+2 is the largest asummed prime number of the pair p and p+2

and n is the a positive integer greater than p+2.

The function L gives the number of integers that have as factor p and p+2(up to n).

If we suppose that there exist a larger pair of the form p+2k and p+2(k+1) Than the set of numbers that have as factors p+2k and p+2(k+1) must be equal to 0 (since they do not exist).

L(n,p+2k)= n/((p+2k)(p+2(k+1))

Or

k-->oo

. Reductio ad absurdum!.

We supposed that p+2k and p+2(k+1) were integers. The numbers p+2k and p+2(k+1) does not exist unless L(n,p+2k) is not equal to 0 !! So there will always be a fraction of the set Z that will have p+2k and p+2(k+1) in their unique prime factorization. So there is an ifinite number of primes p such that p + 2 is also prime.

please tell me is all wrong???

]]>